14 research outputs found

    3D deep convolutional neural network-based ventilated lung segmentation using multi-nuclear hyperpolarized gas MRI

    Get PDF
    Hyperpolarized gas MRI enables visualization of regional lung ventilation with high spatial resolution. Segmentation of the ventilated lung is required to calculate clinically relevant biomarkers. Recent research in deep learning (DL) has shown promising results for numerous segmentation problems. In this work, we evaluate a 3D V-Net to segment ventilated lung regions on hyperpolarized gas MRI scans. The dataset consists of 743 helium-3 (3He) or xenon-129 (129Xe) volumetric scans and corresponding expert segmentations from 326 healthy subjects and patients with a wide range of pathologies. We evaluated segmentation performance for several DL experimental methods via overlap, distance and error metrics and compared them to conventional segmentation methods, namely, spatial fuzzy c-means (SFCM) and K-means clustering. We observed that training on combined 3He and 129Xe MRI scans outperformed other DL methods, achieving a mean ± SD Dice of 0.958 ± 0.022, average boundary Hausdorff distance of 2.22 ± 2.16 mm, Hausdorff 95th percentile of 8.53 ± 12.98 mm and relative error of 0.087 ± 0.049. Moreover, no difference in performance was observed between 129Xe and 3He scans in the testing set. Combined training on 129Xe and 3He yielded statistically significant improvements over the conventional methods (p < 0.0001). The DL approach evaluated provides accurate, robust and rapid segmentations of ventilated lung regions and successfully excludes non-lung regions such as the airways and noise artifacts and is expected to eliminate the need for, or significantly reduce, subsequent time-consuming manual editing

    Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal)

    Get PDF
    The Alto da Várzea radium mine (AV) exploited ore and U-bearing minerals, such as autunite and torbernite. The mine was exploited underground from 1911 to 1922, closed in 1946 without restoration, and actually a commercial area is deployed. Stream sediments, soils and water samples were collected between 2008 and 2009. Stream sediments are mainly contaminated in As, Th, U and W, which is related to the AV radium mine. The PTEs, As, Co, Cr, Sr, Th, U, W, Zn, and electrical conductivity reached the highest values in soils collected inside the mine influence. Soils are contaminated with As and U and must not be used for any purpose. Most waters have pH values ranging from 4.3 to 6.8 and are poorly mineralized (EC = 41-186 µS/cm; TDS = 33-172 mg/L). Groundwater contains the highest Cu, Cr and Pb contents. Arsenic occurs predominantly as H2(AsO4)- and H(AsO4)2-. Waters are saturated in goethite, haematite and some of them also in lepidocrocite and ferrihydrite, which adsorbs As (V). Lead is divalent in waters collected during the warm season, being mobile in these waters. Thorium occurs mainly as Th(OH)3(CO3)-, Th(OH)2(CO3) and Th(OH)2(CO3) 22- , which increase water Th contents. Uranium occurs predominantly as UO2CO3, but CaUO2(CO3) 32- and CaUO2(CO3)3 also occur, decreasing its mobility in water. The waters are contaminated in NO2-, Mn, Cu, As, Pb and U and must not be used for human consumption and in agricultural activities. The water contamination is mainly associated with the old radium mine and human activities. A restoration of the mining area with PTE monitoring is necessary to avoid a public hazard.Thanks are due to Prof. Joao Coutinho for the determination of organic matter and cation exchange capacity in samples of stream sediments and soils and A. Rodrigues for the water analyses, EDM for some information on the Alto da Varzea mine area. This study had the support of Portuguese Fundacao para a Ciencia e Tecnologia (FCT), through the strategic projects UID/GEO/04035/2013 and UID/MAR/04292/2013 (MARE).info:eu-repo/semantics/publishedVersio

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    INTRODUCTION: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. METHODS: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. FINDINGS: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. INTERPRETATION: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification. FUNDING: UK Research and Innovation and National Institute for Health Research

    Study of Heavy Elements by Relativistic Fock Space and Intermediate Hamiltonian Coupled Cluster Methods

    No full text
    corecore